Model-free uncertainty estimation in stochastical optical fluctuation imaging (SOFI) leads to a doubled temporal resolution.
نویسندگان
چکیده
Stochastic optical fluctuation imaging (SOFI) is a super-resolution fluorescence imaging technique that makes use of stochastic fluctuations in the emission of the fluorophores. During a SOFI measurement multiple fluorescence images are acquired from the sample, followed by the calculation of the spatiotemporal cumulants of the intensities observed at each position. Compared to other techniques, SOFI works well under conditions of low signal-to-noise, high background, or high emitter densities. However, it can be difficult to unambiguously determine the reliability of images produced by any superresolution imaging technique. In this work we present a strategy that enables the estimation of the variance or uncertainty associated with each pixel in the SOFI image. In addition to estimating the image quality or reliability, we show that this can be used to optimize the signal-to-noise ratio (SNR) of SOFI images by including multiple pixel combinations in the cumulant calculation. We present an algorithm to perform this optimization, which automatically takes all relevant instrumental, sample, and probe parameters into account. Depending on the optical magnification of the system, this strategy can be used to improve the SNR of a SOFI image by 40% to 90%. This gain in information is entirely free, in the sense that it does not require additional efforts or complications. Alternatively our approach can be applied to reduce the number of fluorescence images to meet a particular quality level by about 30% to 50%, strongly improving the temporal resolution of SOFI imaging.
منابع مشابه
Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells
Focal adhesions are complicated assemblies of hundreds of proteins that allow cells to sense their extracellular matrix and adhere to it. Although most focal adhesion proteins have been identified, their spatial organization in living cells remains challenging to observe. Photo-activated localization microscopy (PALM) is an interesting technique for this purpose, especially since it allows esti...
متن کاملComplementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity betwee...
متن کاملFourier interpolation stochastic optical fluctuation imaging.
Stochastic Optical Fluctuation Imaging (SOFI) is a super-resolution fluorescence microscopy technique which allows to enhance the spatial resolution of an image by evaluating the temporal fluctuations of blinking fluorescent emitters. SOFI is not based on the identification and localization of single molecules such as in the widely used Photoactivation Localization Microsopy (PALM) or Stochasti...
متن کاملParallel Statistical Multi-resolution Estimation
We discuss several strategies to implement Dykstra’s projection algorithm on NVIDIA’s compute unified device architecture (CUDA). Dykstra’s algorithm is the central step in and the computationally most expensive part of statistical multi-resolution methods. It projects a given vector onto the intersection of convex sets. Compared with a CPU implementation our CUDA implementation is one order of...
متن کاملAchieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI)
Superresolution Optical Fluctuation Imaging (SOFI) as initially demonstrated allows for a resolution enhancement in imaging by a factor of square-root of two. Here, we demonstrate how to increase the resolution of SOFI images by re-weighting the Optical Transfer Function (OTF). Furthermore, we demonstrate how cross-cumulants can be exploited to obtain a fair approximation of the underlying Poin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical optics express
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2016